- Grade 5 Topic 9: Apply Understanding of Division to Divide Fractions

Big Conceptual Idea: Numbers and Operations-Fractions (pp. 11-14)
Prior to instruction, view the Topic 9 Professional Development Video located in Pearson Realize online. Read the Teacher's Edition (TE): Cluster Overview/Math Background (pp. 455A-455F), the Topic Planner (pp. 523A-523C), all 8 lessons, and the Topic Assessments (pp. 581-581A).

Mathematical Background:	Topic Essential Question:
Read Topics 8-9 Cluster	
Overview/Math Background	How are fractions related to division? How can you divide with
whole numbers and unit fractions?	
(TE, pp. 455A-455F)	Reference Answering the Topic Essential Questions (TE, pp. 579-580) for key elements of answers to the Essential Question.

The lesson map for this topic is as follows:

Topic 9 Divide Fractions
Number of
lessons: $\mathbf{8}$
A/D/E: $\mathbf{3}$ days
NVACS Focus:
NF.B
Total days: ~11
$\frac{\text { Pacing Framework: }}{\text { Balanced Calendar }}$

$9-1$	$9-2$	$9-3$	$9-4$	$9-5$	$9-6$	$9-7$	$9-8$	Assessment

3 A/D/E days used strategically throughout the topic

Instructional Note:

Balanced Calendar
This topic focuses on Nevada Academic Content Standards (NVACS) cluster 5.NF.B; "Apply and extend previous understandings of multiplication and division to multiply and divide fractions" (2010). Topic 9 will specifically target:

- 5.NF.B.3; Interpret a fraction as division of the numerator by the denominator $(a / b)=a \div b$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fractions models or equations to represent the problem (NVACS, 2010).
- 5.NF.B.7a; Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because (1/12) $\times 4=1 / 3$ (NVACS, 2010).
- 5.NF.B.7b; Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$ (NVACS, 2010).
- 5.NF.B.7c; Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$. of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins? (NVACS, 2010).

Topic 9 moves students from multiplying with fractions to dividing. In $5^{\text {th }}$ grade, the focus is on strengthening students' understanding of division and its connection to multiplication. It is critical that students engage in the actual modeling and/or representation of the division process. Representational models are critical tools for extending understandings related to the division of whole numbers to this new content, division of whole numbers and unit fractions (Fennell, Topic 9 PD video enVisionmath2.0).

In fifth grade, students only work with whole numbers and unit fractions. They will not be asked to divide a fraction by a fraction until sixth grade. This boundary allows students the time to build conceptual understanding before they are asked to apply abstract algorithms. At this point students do not need to learn the U.S traditional algorithm for dividing fractions. Moving students too quickly to that level of abstraction can be detrimental to their learning. Division of fractions is one of the most misunderstood and mysterious algorithms in mathematics. To avoid this mystery, we need to help students really understand when and how to divide fractions (Van de Walle, Karp, Lovin, \& Bay-Williams, 2014). The importance of teaching this content for understanding rather than focusing on procedures first is reiterated by Francis Fennell, "You may have heard, ours is not to wonder why, just invert and multiply. Our challenge, and our responsibility, is to ensure that all students understand how and why these procedures work. And that is so important" (Topic 9 PD video enVisionmath2.0).

A common misconception is that division will always make numbers smaller (Karp, Bush \& Dougherty, 2014). Students tackled a related misconception about multiplication in Topic 8 (see Topic 8 instructional note).

Students need to think about the roles of the dividend and the divisor in relation to context to determine if their answers make sense. They should be able to determine what is being shared and how many equal shares are needed. Modeling the context of a problem can help students decide if their answer is reasonable and understand why.

Math Practice 8: Look for and express regularity in repeated reasoning

Focus on opportunities for students to develop Mathematical Practice 8 behaviors as this is the focus of the Math Practices and Problem Solving, lesson 9-8. Reference the Teacher's Edition (TE, pp. F28-F28A) and the NVACS (2010, p.8).

	Essential Academic Vocabulary Use these words consistently during instruction.	
New Academic Vocabulary: (First time explicity taught)	Review Academic Vocabulary: (Vocabulary explicitly taught in prior grades or topics)	
	unit fraction dividend divisor quotient inverse operation	

Additional terminology that students may need support with:

Collaborative Team Conversations (CTC)

Consider using one of the following as part of the formative assessment process at the lesson level to collect student work to analyze for evidence of mathematical understanding:

Guiding questions: "Are students using models to represent division situations containing whole numbers and fractions?"
"Are students using multiplication to estimate and determine if quotients are reasonable?"

Lesson	Evidence	Look for
$9-3$	Homework and Practice (student work samples) Item 13	Focus CTC around the big idea: $\bullet \quad$ ability to connect visual model with a division expression. $\bullet \quad$ use of multiplication to check reasonableness of a quotient.
$9-3$	Quick Check (digital platform)	Focus CTC around data analysis and collection of student workspace (scratch paper). Printable version available under "Teacher Resources".
$9-6$	Solve and Share (student work samples)	Focus CTC around the big idea: $\bullet \quad$ student strategies and models used to represent the context. $\bullet \quad$ use of multiplication to check reasonableness of a quotient.
$9-6$	Quick Check (digital platform)	Focus CTC around data analysis and collection of student workspace (scratch paper). Printable version available under "Teacher Resources".

Learning Cycle	Topic Performance Assessments	Use Scoring Guide TE pp. 579-582A		
SE pp. 579-582			\quad	
:---				

NVACS (Content and Practices)	Mathematical Development of the Big Idea	Instructional Clarifications \& Considerations
Lesson 9-1: Fractions and Division		
5.NF.B. 3 MP. 1 MP. 2 MP. 3 MP. 4	Access Prior Learning: In $4^{\text {th }}$ grade students learned that a multiple of a / b is $1 / b$ (4.NF.B) Students divided whole numbers and decimals to find quotients and remainders in previous topics. Developing the Big Idea: Students build conceptual understanding of division through use of tools, models and procedures to explore dividing two whole numbers where the quotient is a whole number and a fraction.	Solve and Share: A wide range of strategies will be used to solve this problem. Some students will partition every waffle into fourths while others will share 1 whole waffle and only partition the remaining two. Even here, students may partition by halves or fourths. Yet, the share of 1 person is always $6 / 4$. Use students' models and thinking to analyze this pattern and discuss about how division is related to fractions. Draw out the idea that when equal/fair sharing, the total amount is partitioned by the number of shares. Students are building towards the idea that fractions and division are the same, or that $a \div b=a / b$. Students can test their strategies and conjectures using the Look Back! problem which eliminates one of the waffles. Visual Learning: An equal/fair sharing problem is modeled using visual representations including a number line. How do visual representations help to solve these problems? Division problems interpreted as fractions are modeled. Can students generalize this idea to create a mathematical rule? Students can test a new model/strategy using the Convince Me! problem.

Lesson 9-4: Divide Whole Numbers by Unit Fractions		
5.NF.B.7b 5.NF.B.7c MP. 1 MP. 2 MP. 4 MP. 5	Access Prior Learning: Students divided a whole number by a fraction in the previous lesson. Developing the Big Idea: Students use models and procedures to build a conceptual understanding of division with fractions by connecting to multiplication.	Solve and Share: A grouping problem is given with a context that leads to using circle fractions. Consider providing Teaching Tool 14 (circle fraction models) to encourage use of a visual model to solve this problem. Can the circle models represent a division and multiplication equation? How does the division equation also represent the context of this problem? Visual Learning: A Measurement division problem is modeled with circle fractions and a number line. This type of problem helps students see how fractional chunks can be subtracted or added up to form a larger total. Students see why the quotient becomes larger than the dividend or divisor. Can this problem be solved with multiplication? Students can test their ideas using the Convince Me! problem. Use of a number line or visual model is encouraged for solving the Guided and Independent Practice problems.
Lesson 9-5: Divide Unit Fractions by Non-Zero Whole Numbers		
5.NF.B.7a 5.NF.B.7c MP. 2 MP. 3 MP. 4 MP. 5 MP. 8	Access Prior Learning: Students have learned about the meanings of division as well as how fractions can partition wholes in previous grades and topics. Developing the Big Idea: Students use models to build conceptual understanding of dividing a unit fraction by a whole number.	Solve and Share: Ask students to estimate before solving. If 4 people are sharing a half, will the quotient be larger or smaller than $\frac{1}{2}$? Students can use concrete tools and visual models to represent the context of this problem. Facilitate a discussion to compare students' strategies and solutions. What happens to the quotient when a unit fraction is partitioned into equal shares? Can this problem be represented using a multiplication fact? Visual Learning: Dividing a unit fraction by a whole number is shown using an area model (pan of cornbread) and a number line. Help students connect these strategies to using multiplication. The Convince Me! can be used to further that discussion. Consider assigning a small number of items from the Independent Practice to enable students have time to try various models. Encourage students to connect their models to a related multiplication fact. Assess and Differentiate: Partitioning a rectangular area model is show on Another Look! Students should explore using this model, as well as, the number line to solve the Homework and Practice problems.
Lesson 9-6: Divide Whole Numbers and Unit Fractions		
5.NF.B.7a 5.NF.B.7b 5.NF.B.7c MP. 1 MP. 2 MP. 4 MP. 8	Access Prior Learning: Students divided unit fractions and whole numbers in previous lessons. Developing the Big Idea: Students connect procedures to models and drawings to strengthen conceptual knowledge and build procedural skill with dividing unit fractions and whole numbers.	Solve and Share: Look for students using visual models and numerical expressions to represent this problem. Facilitate a discussion to help students connect the different representations. Are students using representations to make sense of the problem before calculating? How can a numerical expression and a visual model represent the same context mathematically? Visual Learning: The Visual Learning Bridge demonstrates use of an area model and a number line. How is this similar or different to strategies shared by students during the Solve and Share? Help students to make connections between the models and the numerical expression representing the problem. Can students generalize about the size of a quotient based on whether the dividend is whole number or a fraction? Assess and Differentiate: On the Homework and Practice pages, students practice using models to solve problems with unit fractions divided by a whole number and a whole number divided by a unit fraction. *CTC: Solve and Share (student work samples) *CTC: Quick Check (digital platform)
Lesson 9-7: Solve Problems Using Division		
5.NF.B.7c MP. 1 MP. 2 MP. 4 MP. 6	Access Prior Learning: Students divided unit fractions and whole numbers in previous lessons. Securing the Big Idea: Students apply knowledge of dividing unit fractions and whole numbers to solve word problems.	Solve and Share: Students should work to model and create a plan before solving this multi-step problem. Share student strategies and explanations to draw out ideas about how good problem solvers make sense of a problem. Visual Learning: Students might need additional time and strategic questioning support to help them make sense of this problem. Are students able to create a model of their own that matches the context of this problem? -continues on next page-

\(\left.$$
\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { The remainder is reported as R6 in the Visual Learning Bridge. Students in 5th grade will } \\
\text { understand that a remainder is actually a fractional piece. Can they write this remainder correctly } \\
\text { as a fractional piece? Watch for students who represent all fractions as tenths. They might have } \\
\text { misconceptions of fractional pieces due to over generalizing the base-ten system. }\end{array}
$$

Assess and Differentiate:

The Reteach page breaks a word problem into smaller pieces. It may be difficult for students to

complete this independently because the context of the problem can be lost. Consider skipping the

reteach section and instead assigning a single (or small number) of Homework and Practice items

so that students have time to explain their strategies and solutions. Writing their thinking and

sharing can help to strengthen mathematical reasoning.\end{array}\right\}\)| Lesson 9-8: Math Practices and Problem Solving- Repeated Reasoning |
| :--- | :--- | :--- |

References

Council of Chief State School Officers. (2010). The Nevada Academic Content Standards. Retrieved from http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards Instructional Support/Nevada Academic Standards/Math Doc uments/mathstandards.pdf.

Common Core State Standards Writing Team. (2015). Progressions for the Common Core State Standards in Mathematics (draft). K-5, Numbers in Operations Base Ten. Tucson, AZ: Institute for Mathematics and Education, University of Arizona.

Karp, K., Bush, S., \& Dougherty, B. (2014). 13 rules that expire. Teaching Children Mathematics, 21(1), 18-25.

Van de Walle, J., Karp, K., Lovin, L., \& Bay-Williams, J. (2014). Teaching student-centered mathematics: Developmentally appropriate instruction for grades 6-8. (Vol. 2). New York, NY: Pearson.

