- Grade 3 Topic 1: Understand Multiplication and Division of Whole Numbers

Big Conceptual Idea: K-5 Operations and Algebraic Thinking (pp. 22-28)
Prior to instruction, view the Topic 1 Professional Development Video located in Pearson Realize online. Read the Teacher's Edition (TE): Cluster Overview/Math Background (pp. 1A-1F), the Topic Planner (pp.1l-1K), all 7 lessons, and the Topic Assessments (pp. 55-56A).

Mathematical	Topic Essential Question:
Background:	What are the different meanings of multiplication and division?
Read Topic 1-2	Reference Answering the Topic Essential Question (TE, pp. 53-54) for key elements
Cluster Overview/Math	Ba answers to the Essential Question. Backround (TE, pp.
1A-1F)	

The lesson map for this topic is as follows:

$1-1$	$1-2$	$1-3$	$1-4$	$1-5$	$1-6$	$1-7$	Assessment

4 A/D/E days used strategically throughout the topic

Topic 1 Muftiplication ond Division of Whole Numbers Number of lessons: 7 A/D/E: $\mathbf{4}$ days NVACS Focus: OA.A
Total Days: ~11
3rd Grade Curriculum
Pacing Framework:
Balanced Calendar

Instructional note:

This topic focuses on beginning to build the meaning of multiplication and division to meet the Nevada Academic Content Standards (NVACS) 3.OA.A cluster, "Represent and solve problems involving multiplication and division" (2010). This topic focuses on exploring multiplication as meaning equal groups and connects this understanding to $2^{\text {nd }}$ grade when children "Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and 5 columns; write an equation to express the total as a sum of equal addends" (NVACS, 2.OA.C.2, 2010).

Throughout this topic, children model various multiplication situations using tools including arrays and number lines. Additionally, students use strategies such as skip counting to explore the concept of equal groups and connect repeated addition to multiplication. Students are introduced to the Commutative Property of Multiplication which states that the order factors are multiplied in does not change the product. Students need to understand that multiplication equations model situations. For example, 4 teams of 6 players (4 $x 6$) is different from 6 teams of 4 players (6×4). Explore the equal groups within the array for each model of (4×6) and (6×4).

Conceptually, the focus is understanding multiplication as equal groups and relating this to division. In $2^{\text {nd }}$ grade, students understand that they are able to add and subtract groups with varying group size (e.g. $36-14$ or $45+76$), now this knowledge is pushed to realizing that in multiplication the group size must be equal ($2+2+2+2$ is 4 groups of 2 , or 4×2). Emphasize and help students connect "equal group size", "equal addends" and "equal subtrahends" throughout the topic.

Students develop understanding of division as a way of separating one group of objects into equal groups. Division has two (2) different types of problems. Partitive division, also known as dealing or fair sharing, is when the number of groups is known but the size of each group is unknown. Measurement division, also known as chunking, is when the number in each group is known but the number of groups is unknown. Measurement division allows students to employ repeated subtraction. The two (2) types can only be determined when working with division in context or word problems and will be explored further in Topic 5.

This understanding of "equal groups" begins to develop the foundations for fluency and will build over the next few topics to support 3.OA.C.7, "Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g. knowing that $8 \times 5=40$, one knows $40 / 5=8$) or properties of operations. By the end of Grade 3 , know from memory all products of two one-digit numbers" (2010). It is important to note that this expectation may not be secure until "the end of Grade 3." Additionally, Van de Walle, Karp, Lovin, and Bay-Williams (2014) state that, "...students' progress through stages that will eventually result in 'just knowing'" (p. 128). Those stages are:

- Phase 1: Constructing Meaning and Counting Strategies

- Phase 2: Reasoning Strategies
- Phase 3: Working toward quick recall

Detailed information about the three phases of development towards fact fluency can be found in the article Basic Math Facts: A Sequence of Learning. This topic focuses on phase 1: Constructing Meaning and Counting Strategies for multiplication and division. In this topic students develop understanding of multiplication as a way of joining equal groups by using repeated addition with arrays and skip counting with the open number line and arrays.

Tools are referenced several times in this topic in the Look Back!. Consider discussing these questions whole group to help establish a culture for learning mathematics with manipulatives seen as tools for working with, understanding and representing mathematics.

Focus Math Practice 5: Use appropriate tools strategically

Focus on opportunities for students to develop Mathematical Practice 5 behaviors, as this is the focus of the Math Practices and Problem Solving lesson, 1-7. Reference the Teacher's Edition (TE, pp. F25-F25A) and the NVACS (2010, p. 6).

Assessment Considerations:

On Topic Assessment item 6, students' arrays need to actually match the context described in the problem. For example, students must have 2 rows with 4 items in each row as their array to receive credit (2×4). Encourage students to continue to use tools while completing the assessment.

Both the Topic Assessment and the Topic Performance Assessment will provide opportunities to work at various DOK levels. Choose the assessment(s) that will provide the most information about student understanding. For Topic 1, consider scaffolding this resource by allowing students to work in groups throughout the topic and building in opportunities for discussion, peer feedback, and revision.

Finally, please note that lessons 1-1 and 1-2 indicate that these are possible 2-day lessons. Additional A/D/E days were built into the 2019/2020 WCSD 3 Grade Pacing Framework to allow time to establish class routines and expectations for:

- Accessing and returning manipulatives
- Classroom discussion norms
- Mathematical Mindset
- Integrating ideas from the Math Practices and Problem Solving Handbook (TE p. F19-F35)

	Essential Academic Vocabulary Use these words consistently during instruction.
New Academic Vocabulary: (First time explicity taught)	Review Academic Vocabulary: (Vocabulary explicityly taught in prior grades or topics)
multiplication	equal groups
factors	number line
product	array
equation	row
unknown	column
Commutative (order) Property	
of multiplication	
division	

Additional terminology that students may need support with: repeated addition and repeated subtraction

*Collaborative Team Conversations (CTC)

Consider using one of the following as part of the formative assessment process at the lesson level to collect student work to analyze for evidence of mathematical understanding:

Guiding question: "Are students using multiple strategies to multiply and divide whole numbers?"

Lesson	Evidence	Look for
$1-3$	Solve \& Share (student work samples)	Focus CTC around big idea: $\bullet \quad$ students can draw arrays to show joining groups. students can use multiple tools, models or strategies (skip counting, repeated addition, arrays). students understand multiplication means equal groups.
$1-5$	Quick Check (digital platform)	Focus CTC around data analysis and collection of student workspace (scratch paper). students understand that multiple objects can be shared by separating into equal groups. Printable version available under "Teacher Resources".

Learning Cycle Assessments (summative)	Topic Assessments SE pp. 53-56	Use Scoring Guide TE pp. 53-56A

Standards listed in bold indicate a focus of the lesson.

Lesson 1-4: The Commutative Property		
3.OA.B. 5 3.OA.A. 3 MP. 3 MP. 7	Access Prior Learning: In Grade 2, students were secure in their understanding of the commutative (order) property of addition. This property states that order of addend does not change the sum. In lesson 1-3, Grade 3, students learned that arrays can represent multiplication and that the order of the factors gives the number of rows and the number in each row. Beginning of the Big Idea: In this lesson students work with their secure understanding of the Commutative (order) Property of Addition to beginning to build the understanding of the Commutative (order) Property of Multiplication. The property states that we can multiply the factors in any order and the product stays the same.	Instructional note: Throughout this lesson bring attention to how switching factors creates a different multiplication situation. The Commutative Property gives us a strategy for finding products. Therefore, if 2×7 is an easier fact to recall, I can use 2×7 to get the product for 7×2. You may consider having students return to modeling the differences in the expressions while still seeing that the product remains the same. Solve \& Share: To continue to support students' development of behaviors in selecting appropriate tools (MP.5), consider waiting to distribute the 25 counters until after posing the question, "What tools or strategies can you use to solve this problem?" (TE, p. 25). Look Back: In the event that a conjecture supporting the Commutative (order) Property is not developed during sharing of student solution methods and reasoning from the Solve \& Share, consider discussing the Look Back! and relating it back to models for the Solve \& Share. Visual Learning: Consider pausing the Visual Learning Animation before it shows the repeated addition in the array if students are still struggling with connecting repeated addition to a multiplication equation. After discussing, "Did the order of the factors change?" consider posing the question, "Do we have the same multiplication situation for both arrays?" See the above instructional note for ways to expand this discussion. Independent Practice/Math Practices and Problem Solving: To formatively assess if students are able to distinguish a multiplicative situation from an additive situation consider posing item 13 , without students having access to the student edition since it leads students to knowing it is an additive situation. Assess and Differentiate/Intervention Activity: If time permits, you may consider replacing the On and Advanced Activity Center with either the games Toss and Talk (TE, p. 11A), Teamwork (TE, p. 23A) or the Fluency Practice Activity (TE, p. 49). Child-watch to identify students who need additional support and pull them in a small group to complete the Intervention Activity (TE, p.29A).
Lesson 1-5: Division as Sharing		
3.OA.A. 2 3.OA.A. 3 MP. 1 MP. 3 MP. 4 MP. 5 MP. 6	Access Prior Learning: In Grade 2, students explored the idea of fair shares in geometry by dividing a shape into equal parts. Throughout this topic, students have been working to understand multiplication as the joining of equal groups. Beginning of the Big Idea: This lesson begins to build the understanding that multiple objects can be shared by separating into equal groups and is one way to think of division.	Instructional note: This lesson works with partitive division (fair sharing or dealing) scenarios (known groups, unknown number in each group). Solve \& Share: To continue to support students' development of behaviors in selecting appropriate tools (MP.5), consider waiting to distribute the 20 counters until after posing the question, "How can we represent this problem?" (TE, p. 31). Encourage students to model with a tool or a pictorial representation. Discuss where the mathematics is represented in their model (e.g. Where are the apples? Where are how many each person gets?). Visual Learning: Connecting student solution methods to the bar diagram and how their models are shown, can help students better understand the bar diagram as a model for division. Convince Me: Consider discussing the Convince Me! question to initiate a discussion about remainders. While third grade students do not work with remainders, it is important for them to know that we can still divide when the divisor doesn't exactly go into the dividend (leftovers). Independent Practice/Math Practices and Problem Solving: Consider discussing item 11 as it demonstrates the relationship between the size of the divisor (e.g., $15 \div 3=5,3$ is the divisor) and the quotient (e.g. $15 \div 3=5,5$ is the quotient). Consider discussing item 12 to provide students with the opportunity to reason with a problem that does not provide enough information to solve. -continues on next page-

		Assess and Differentiate/Intervention Activity: If time permits, teach students how to play "Toss and Talk" (TE, p. 35A). All students should have the opportunity to play this game it provides engaging and meaningful practice of a key concept. Child-watch to identify students who need additional support with these ideas and pull them into a small group to do the Intervention Activity (TE, p.35A). *CTC: Quick Check (digital platform)
Lesson 1-6: Division as Repeated Subtraction		
3.OA.A. 2 3.OA.A. 3 MP. 2 MP. 4 MP. 5 MP. 8	Access Prior Learning: In lesson 1-1, Grade 3, students saw that repeated addition is a way to think of multiplication and a way to join equal groups. In lesson 1-5, Grade 3, students learned to think of division as sharing. Developing the Big Idea: In this lesson, students work with their developing understanding that division involves separating one group of objects into equal groups. Students also beginning to build understanding that one way to think about division is as repeated subtraction of the divisor from the dividend. Additionally, this lesson develops the understanding that we have 2 different types of division situations (fair sharing and chunking).	Instructional note: Using repeated subtraction to divide can support students in recognizing the inverse relationship that exists between multiplication and division. Having students work with repeated subtraction as a way of thinking about division also emphasizes the connections between repeated addition as multiplication and repeated subtraction as division. In this lesson, students are working with measurement division (chunking) scenarios, which allows repeated subtraction to be used as a strategy. Solve \& Share: To continue supporting students' in selecting appropriate tools (MP.5), consider waiting to distribute the 12 counters until after posing the question, "What tools can you use to solve this problem?" (TE, p. 37). For students that incorrectly use $12-2=10$ to solve this problem, consider asking them to model the problem with counters instead. Can they explain how many friends will get tacos using the counters? Can they connect the concrete modelling to repeated subtraction? During the whole class discussion of student solution methods and reasoning, consider posing the question, "We used repeated addition to help us find the solution to a multiplication equation, how could we use repeated subtraction to find the solution to this division situation?" and "where are our equal groups in repeated subtraction?" "How many groups do we have? Visual Learning: The Visual Learning Animation uses the bar diagram to model the division situation presented in this problem. This lesson is focusing entirely on measurement (chunking) division. In this type of division, we know the number of objects in the equal groups and need to find the total number of equal groups. Consider discussing the differences in the bar diagrams to develop the understanding that we have 2 different types of division situations (fair sharing and chunking). Convince Me: Consider assigning the Convince Me! and discussing to help students understand the role of the dividend, divisor, and quotient. Assess and Differentiate/Intervention Activity: If time permits, you may consider replacing the On and Advanced Activity Center with the game Toss and Talk (TE, p. 35A) or the Fluency Practice Activity (TE, p. 49). Child-watch to identify students who need additional support and pull them into a small group to complete the Intervention Activity (TE, p. 41A).
Lesson 1-7: Math Practices and Problem Solving- Use Appropriate Tools		
3.OA.A. 3 3.OA.A. 1 3.OA.A. 2 MP. 5 MP. 1 MP. 2 MP. 3 MP. 4 MP. 7	Access Prior Learning: Previous lessons in this topic have developed students' understanding of multiplication and division situations, and how to use appropriate tools strategically as they have modeled with counters. Securing the Big Idea: This lesson secures the idea that we can use appropriate tools strategically to model multiplication and division situations.	This lesson provides an opportunity to focus on the Thinking Habits and display the behaviors associated with Math Practice 5. Refer to the Math Practices and Problem Solving Handbook (TE, pp. F25-F25A, F29) for suggestions on how to develop, connect and assess this Math Practice. Also, reference the handbook in the Student Edition (SE, p. F25). Solve \& Share: Consider reintroducing MP. 5 Thinking Habits (SE, p. F25) before introducing the Solve \& Share. Use the time when students are working on the Solve \& Share as an opportunity to child-watch for behaviors associated with MP. 5 that are listed in the Math Practices and Problem Solving Handbook (p. F25A). After discussing student solution methods and reasoning, ask students to self-score for the behaviors associated with this math practice. Assess and Differentiate: If time permits, you may consider replacing the On and Advanced Activity Center with the game Toss and Talk (TE, p. 35A) or the Fluency Practice Activity (TE, p. 49). Child-watch to identify students who need additional support and pull them into a small group to complete the Intervention Activity (TE, p.47A).

References

Bay-Williams, J., Kling, G. (2014) Enriching addition and subtraction fact mastery through games. Teaching Children Mathematics; 21(4), 238-247.
Burns, M. (2015). About teaching mathematics (4th ed.).Sausolito, CA: Scholastic, Math Solutions.
Carpenter, T., Fennema, E., Loef Franke, M., Levi, L., Empson, S.B. (2015). Children's mathematics: Cognitively guided instruction (2nd ed.). Portsmouth, NH: Heinemann.

Council of Chief State School Officers. (2010). The Nevada Academic Content Standards. Retrieved from http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards Instructional Support/Nevada Academic Standards/Math Doc uments/mathstandards.pdf.

Karp, K., Bush, S., \& Doughtery, B. (2014). 13 rules that expire. Teaching Children Mathematics, 21(1), 18-25.
Kling, G. \& Bay-Williams, J. (2014). Assessing basic fact fluency. Teaching Children Mathematics, 20(8). 489-497.
Kling, G. \& Bay-Williams, J. (2014). Assessing basic fact fluency: appendix. Teaching Children Mathematics, 20(8). Retrieved from https://www.nctm.org/Publications/Teaching-Children-Mathematics/2014/Vol20/Issue8/Assessing-Basic-Facts-Fluency/.

Van de Wall, J., Karp, K., Lovin, L., \& Bay-Williams, J. (2014). Teaching student-centered mathematics: Developmentally appropriate instruction for grades 3-5 (2nd ed.). New York, NY: Pearson.

This page is intentionally left blank.

